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Stypoldione (1) is the most prominent member of a rare class 
of pentacyclic marine diterpenoids characterized by an unusual 
spiro-o-benzoquinonefuran moiety.2,3 In addition to pronounced 

I Stypoldionej 

ichthyotoxic properties, 1 inhibits synchronous cell division in 
the fertilized sea urchin egg assay4 and blocks in vitro microtubule 
polymerization by a novel mechanism which differs from other 
mitotic spindle poisons.5 Accordingly, it has engendered con
siderable synthetic attention6 and provided a forum for the 
demonstration of novel synthetic procedures.7 Herein, wedescribe 
a conceptually distinct approach to 1 featuring methodologies 
designed to address outstanding issues confronted during the total 
synthesis of 1, viz., (a) utilization of a chiral AB-ring precursor 
excised from a commercial steroid,8 (b) regiospecific ring 
expansion affording a functionalized cyclohexanone, and (c) 
stereoselective intramolecular heteroatom spiroannulation. It is 
anticipated that these procedures will be applicable to other 
systems of interest in natural products total synthesis. 

Octalone 4,9 comprising rings A and B, was conveniently 
obtained albeit in modest yield by thermolysis of the Jones 
oxidation product 2 derived from commercial 18/3-glycyrrhetinic 
acid. Best results were achieved when 2 was admixed with the 
antioxidant 3-terf-butyl-4-hydroxy-5-methylphenyl sulfide (BMPS) 
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Scheme 1° 

BDMS .'BuMe2Si 

"Reaction conditions: (a) BnBr, NaH, DMF, 25 0C, 2 h. (b) BH3, 
THF, 24 "C, 4 h; PCC, CH2Cl2, 1.5 h. (c) C2H3MgBr, THF, 0 — 24 
0C, 2 h. (d) HMPA, 210 0C, 1 h. (e) BH3, THF, 15 0C, 12 h; CO (12 
atm), PhCH3, 6 h; H2O2. (0 Ph3AsCHSPh (1.5 equiv), THF, -10 0C, 
3 h; SiO2. (g) Oxone, THF/H20 (2:1), 0 0C, 6 h. (h) Me2NNH2, EtOH, 
68 0C, 12 h. (i) 12, LDA, THF, 0 — 24 0C, 2 h. G) Bu4NF, THF, 0 0C, 
7 h. (k) MeI (1 equiv), CH3CN, 80 0C, 1.5 h. (1) CuCl2, THF/HjO 
(3:1), 23 0C, 4 h. (m) Ph3PCHLi, THF, -78 — 0 0C, 12 h; HOAc. (n) 
Pd/C, H2 (40 psi), EtOAc, 23 ° C, 6 h. (o) NO(KS03)2, KH2PO4, acetone/ 
H2O (2:1), 23 0C, 2 h. 

(10% w/w) and distilled (350 0C, 40 mmHg, 3 h) from a kugelrohr 
or simple bulb-to-bulb distillation apparatus (eq I).10 This 

degradation can be envisioned as a retro-Diels-Alder reaction 
but is more likely a heterolytic process.11 Sodium borohydride 
reduction of the crude pyrolysate 3 led stereospecifically to 4 in 
35-40% overall yield. 

Sequential benzylation of the C(3)-alcohol in 4, olefin hy-
droboration, and pyridinium chlorochromate (PCC) oxidation 
of the adduct readily afforded ketone 5 (Scheme I). Ring C was 
subsequently grafted onto 5 by a two-stage process that regio-
selectively established the a-(phenylsulfenyl)cyclohexanone which 
played a crucial role in introducing later functionality. To this 
end, 5 was converted to 6 by addition of vinylmagnesium bromide 
and dehydration in hot HMPA.12 Ring closure via transannular 
hydroboration from the less hindered a-face and in situ carbo-
nylation of the resultant borane according to Brown13 yielded 
cyclopentanone 7. Exposure of 7 to (phenylthiomethylidene)-
triphenylarsorane as described previously14 generated a labile 
exocyclic epoxy sulfide that, in practice, was allowed to rearrange 
to 8 during SiO2 chromatographic isolation. 
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Oxone oxidation of 8 and condensation with unsym-dime-
thylhydrazine yielded a mixture of diastereomeric a-sulfinylhy-
drazones (1.5:1 by 1H NMR), which were influenced by the 
a-sulfinyl group to enolize toward the ring junction. Ring E was 
stereoselectively attached by alkylation of the hydrazone anion 
with benzyl bromide 12,15 resulting in 9. Fluoride-mediated 
desilylation and spiroannulation induced by catalytic HI produced 
10 as anticipated,16 with exclusive intramolecular axial attack by 
the oxygen nucleophile (eq 2). Removal of the hydrazone with 
cupric ion,17 methylenation18 of the liberated carbonyl, and 
catalytic reduction of the resultant exocyclic olefin with simul-
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taneous hydrogenolysis of the benzyl ether gave rise to 11. 
Hydrogenation in this instance from the normally more hindered 
/3-face reflects the residency of ring E beneath ring C, thus 
shielding it from a-side attack. Oxidation of 11 with Fremy's 
salt, as described by Pattenden,7a'b completed the synthesis of 1, 
identical in all respects with an authentic sample. 
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